Research on Multi-Step Prediction of Short-Term Wind Power Based on Combination Model and Error Correction

نویسندگان

چکیده

The instability of wind power poses a great threat to the security system, and accurate prediction is beneficial large-scale entry into grid. To improve accuracy prediction, short-term multi-step model with error correction proposed, which includes complete ensemble empirical mode decomposition adaptive noise (CEEMDAN), sample entropy (SE), improved beetle antennae search (IBAS) kernel extreme learning machine (KELM). First, CEEMDAN decomposes original sequences set stationary sequence components. Then, new components reconstructed according SE value each component reduce workload subsequent prediction. are respectively sent IBAS-KELM for obtained, predicted values obtained by adding two. Finally, added obtain final value. results actual farm data show that has outstanding advantages in high-precision evaluation indexes combined constructed this paper at least 34.29% lower MAE, 34.53% RMSE, 36.36% MAPE compared other models. decreased 30.43%, RMSE 29.67%, 28.57%, error-corrected three-step 55.60%, 50.00%, 54.17% uncorrected method significantly accuracy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of error correction methods on pronunciation accuracy

هدف از انجام این تحقیق مشخص کردن موثرترین متد اصلاح خطا بر روی دقت آهنگ و تاکید تلفظ کلمه در زبان انگلیسی بود. این تحقیق با پیاده کردن چهار متد ارائه اصلاح خطا در چهار گروه، سه گروه آزمایشی و یک گروه تحت کنترل، انجام شد که گروه های فوق الذکر شامل دانشجویان سطح بالای متوسط کتاب اول passages بودند. گروه اول شامل 15، دوم 14، سوم 15 و آخرین 16 دانشجو بودند. دوره مربوطه به مدت 10 هفته ادامه یافت و د...

15 صفحه اول

Study of Short-term Wind Power Prediction Considering the Individual Sample Prediction Error Correction

Wind power prediction of wind farm plays a decisive role in stable electric power system operation.The BP neural network’s basic principle was introduced, and the numerical weather prediction (NWP) data and power data of wind farm as the training data of BP neural network was selected and trained; a linear regression model about the sample prediction error was presented, which considers the cou...

متن کامل

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Research on Short-Term Wind Farm Output Power Prediction Model Based on Meteorological Data Collected by WSN

The prediction of wind farm output power is considered as an effective way to increase the wind power capacity and improve the safety and economy of power system. It is one of the hot research topics on wind power. The wind farm output power is related to many factors such as wind speed, temperature, etc., which is difficult to be described by some mathematical expression. In this paper, Back P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2022

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en15228417